A uniqueness result for the semigroup associated with the Hamilton-Jacobi-Belman operator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness Results for Nonlocal Hamilton-Jacobi Equations

We are interested in nonlocal Eikonal Equations describing the evolution of interfaces moving with a nonlocal, non monotone velocity. For these equations, only the existence of global-in-time weak solutions is available in some particular cases. In this paper, we propose a new approach for proving uniqueness of the solution when the front is expanding. This approach simplifies and extends exist...

متن کامل

new semigroup compactifications via the enveloping semigroups of associated flows

this thesis deals with the construction of some function algebras whose corresponding semigroup compactification are universal with respect to some properies of their enveloping semigroups. the special properties are of beigan a left zero, a left simple, a group, an inflation of the right zero, and an inflation of the rectangular band.

15 صفحه اول

A Uniqueness Result for p-Monotone Viscosity Solutions of Hamilton--Jacobi Equations in Bounded Domains

We consider a class of Hamilton-Jacobi equations H(x, Du(x)) = 0 with no u-dependence, and continuity properties consistent with recent applications in queueing theory. Viscosity solutions are considered in a compact polyhedral domain, with oblique derivative (Neumann-type) boundary conditions. Comparison and uniqueness results are presented which use monotonicity of H(x, p) in the p variable, ...

متن کامل

Uniqueness for unbounded solutions to stationary viscous Hamilton–Jacobi equations

We consider a class of stationary viscous Hamilton–Jacobi equations as

متن کامل

Hamilton–jacobi Semigroup on Length Spaces and Applications

We define a Hamilton–Jacobi semigroup acting on continuous functions on a compact length space. Following a strategy of Bobkov, Gentil and Ledoux, we use some basic properties of the semigroup to study geometric inequalities related to concentration of measure. Our main results are that (1) a Talagrand inequality on a measured length space implies a global Poincaré inequality and (2) if the spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1982

ISSN: 0386-2194

DOI: 10.3792/pjaa.58.273